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Abstract

In recent years, multi-graph matching has become a popular yet challenging task in graph

theory. There exist two major problems in multi-graph matching, i.e., the cycle-consistency

problem, and the high time and space complexity problem. On one hand, the pairwise-

based multi-graph matching methods are of low time and space complexity, but in order

to keep the cycle-consistency of the matching results, they need additional constraints.

Besides, the accuracy of the pairwise-based multi-graph matching is highly dependent on the

selected optimization algorithms. On the other hand, the tensor-based multi-graph matching

methods can avoid the cycle-consistency problem, while their time and space complexity is

extremely high. In this paper, we found the equivalence between the pairwise-based and

the tensor-based multi-graph matching methods under some specific circumstances. Based

on this finding, we proposed a new multi-graph matching method, which not only avoids

the cycle-consistency problem, but also reduces the complexity. In addition, we further

improved the proposed method by introducing a lossless factorization of the affinity matrix

in the multi-graph matching methods. Synthetic and real data experiments demonstrate

the superiority of our method.
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1. Introduction

Graph matching, which aims to find the correspondences between two given graphs,

is a fundamental yet challenging problem in computer vision [1], pattern recognition [2],

data mining [3], and so on [4, 5, 6]. In the last few decades, extensive research has been

done on the graph matching problem: The graph matching models have evolved from the

simplest linear assignment problem [7] to the quadratic assignment problem [8] (the mostly

used), and to high-order matching problem [9, 10, 11]. The optimal solution of the linear

assignment problem can be obtained by the Hungarian method [12] in polynomial time.

However, the quadratic assignment problem and high-order matching problem are known

to be NP-hard. Therefore, many algorithms [13, 14, 15] are proposed to efficiently obtain

an approximation solution for them. In addition, a few studies [16, 17] have also been done

to overcome the high time and space complexity of the graph matching problem. Recently,

researchers have moved their focus to the multi-graph matching (MGM) problem, which is

designed to simultaneously establish the correspondences between more than two graphs.

In MGM, a major task is to ensure that the solution is cycle-consistent. For example, if

node a corresponds to node b, and b corresponds to node c, then node a must correspond

to node c. For example, in Fig. 1a, the matching result is cycle-consistent, on the contrary,

the cycle-consistency is not satisfied in the matching result in Fig. 1b. It’s obvious that

when employing a pairwise matching method to MGM, the independently calculated pair-

wise matching results could be cycle-inconsistent. Therefore, many MGM methods were

proposed to solve this problem, and most of them can be divided into two categories [18]:

one-shot methods and iterative methods. The one-shot methods [19, 20, 21] try to directly

extract a cycle-consistent solution from the matching results obtained by other pairwise

matching methods. Since no reinforcement is performed to increase the objective func-

tion of MGM, these methods are usually sensitive to their inputs. The iterative methods

[22, 23, 24] aim to maximize the objective function of MGM, and account for the cycle-

consistency at the same time. In [22, 23], the cycle-consistency is strictly obeyed over the

whole solution updating procedure. Meanwhile, in [24], the importance of cycle-consistency
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gradually increases during the iteration, which is more flexible.

(a) (b)

Figure 1: An illustration of the cycle-consistency in MGM (a) a cycle-consistent example (b) a cycle-

inconsistent example

Notice that the aforementioned methods are all based on the pairwise matching tech-

niques, thus, maintaining the cycle-consistency of the matching results becomes an inevitable

task for them. Recently, in [25], the authors introduced a tensor-like formulation for the

objective function of MGM, in which the cycle-consistency problem is naturally avoided.

Unfortunately, the proposed formulation is of extremely high time and space complexity.

Therefore, during implementation, the authors only apply the tensor-like formulation for

the first-order (node-to-node similarity) part of the objective function in MGM. Besides, a

simplified pairwise-based MGM model is used to formulate the second-order (edge-to-edge

similarity) part, so that the time and space complexity of the whole algorithm is acceptable

in practice.

Although the pairwise-based MGM and the tensor-based MGM seem different in formu-

lation, it is surprising that the former can be attributed to a special case of the latter, which

will be discussed in detail in the following sections. This finding indicates that the cycle-

consistency problem could be avoided in the pairwise-based MGM methods. In addition,

by utilizing the sparsity of the affinity matrix in the model [17], we hope to further reduce

the complexity of the proposed method. Moreover, due to the integer constraints in MGM,

there exist many local maximums in the objective function. Therefore, the stochastic gradi-

ent descent method is adopted in the presented approximation algorithm, which is expected

to alleviate this problem.
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2. Background

In this section, we first provide a brief introduction of the pairwise matching problem,

then the formulations of the pairwise-based and tensor-based MGM are presented. For con-

venience, the definitions of the used notations in this paper are introduced in the following.

Generally, a graph is denoted by a set G = {V , E}, where V represents a set of nodes

and E denotes edges. In addition, the number of nodes in G is nv = |V|, and the number

of edges is ne = |E|. Moreover, in this paper, a graph G is also associated with 4 incidence

matrices: H11 ∈ {0, 1}nv×nv ,H12 ∈ {0, 1}nv×ne ,H21 ∈ {0, 1}ne×nv ,H22 ∈ {0, 1}ne×ne . The

incidence matrix Hab is used to indicate the connections between the ath-order features and

the bth-order features. For instance, if the ith second-order feature (the ith edge) is connected

to the jth first-order feature (the jth node), then H21
ij is set to 1. In addition, for the kth

graph G [k] from a set of multiple graphs, its numbers of nodes and edges are denoted n
[k]
v

and n
[k]
e , respectively. The incidence matrices of G [k] are given in the form of H[k]ab .

2.1. Pairwise Matching

Given two graphs G [1] and G [2] (assume that n[1]
v ≤ n

[2]
v ), then the pairwise matching model

can be formulated into the well-known quadratic assignment problem, where the objective

is to find an indicator matrix X that maximizes the following quadratic score function.

X̂ =argmax
X

∑
i1i2,j1j2

K
[12]
i1i2,j1j2

Xi1i2Xj1j2

=argmax
X

vec(X)TK[12]vec(X)

s.t. X1[2] = 1[1],XT1[1] ≤ 1[2],X ∈ {0, 1}n
[1]
v ×n

[2]
v ,

(1)

where 1[i] is an all-ones vector with the size of n
[i]
v × 1, and K[12] ∈ Rn

[1]
v n

[2]
v ×n

[1]
v n

[2]
v is the

affinity matrix. The diagonal element K
[12]
i1i2,i1i2

measures the similarity between ith1 node in

G [1] and ith2 node in G [2]. And the non-diagonal element K
[12]
i1i2,j1j2

measures the similarity

between the edge formed by the ith1 , j
th
1 nodes in G [1] and that formed by the ith2 , j

th
2 nodes

in G [2].
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Due to the fact that in many real applications, the edges of a graph are sparse, thus,

many elements in K[12] are zeros. In addition, the nonzero elements in K[12] are contained

in the node-to-node similarity matrix S ∈ Rn
[1]
v ×n

[2]
v and the edge-to-edge similarity matrix

T ∈ Rn
[1]
e ×n

[2]
e . In [17], the authors noticed this phenomenon and proposed the following

factorization of the affinity matrix:

K[12] = (V[2] ⊗V[1])diag(D)(V[2] ⊗V[1])T, (2)

where ⊗ represents the Kronecker product, and

V[1] =
[
H[1]21 ,H[1]11

]
,V[2] =

[
H[2]21 ,H[2]11

]
,

D =

 T −TH[2]21

−H[1]12T H[1]12TH[2]21 + S

 .

It should be noted that in (2), diag(·) vectorizes the given matrix first, and then constructs

a diagonal matrix from the generated vector. The proposed factorization can avoid comput-

ing the costly affinity matrix without loss of information, thus, it has attracted extensive

attention in recent years. Moreover, if the graphs are undirected, the affinity matrix K is

then supersymmetric, i.e., K[12]
i1i2,j1j2

= K
[12]
j1i2,i1j2

= K
[12]
i1j2,j1i2

= K
[12]
j1j2,i1i2

. This indicates that

there are n
[1]
v n

[2]
v + 4n

[1]
e n

[2]
e nonzero elements in K[12]. But when using the factorization in

(2), we only need to store (n
[1]
v +n

[1]
e )(n

[2]
v +n

[2]
e ) elements, i.e., the matrix D. Consequently,

the computational complexity of subsequent calculations can be reduced.

2.2. Multi-graph Matching

Given m graphs, the objective function of most MGM methods is formulated as follows

X̂[pq] =argmax
X[pq]

∑
p,q,p ̸=q

vec(X[pq])TK[pq]vec(X[pq])

s.t. X[pq]1[q] = 1[p], (X[pq])T1[p] ≤ 1[q],

X[pq] ∈ {0, 1}n
[p]
v ×n

[q]
v ,X[pr]X[rq] = X[pq],

(3)

where the notations with a superscript of [pq] are the corresponding variables for G [p] and G [q].

For example, K[pq] ∈ Rn
[p]
v n

[q]
v ×n

[p]
v n

[q]
v is the affinity matrix between G [p] and G [q]. It can be
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found that (3) is equivalent to maximizing the sum of all objective functions of the pairwise

graph matching problems. Besides, X[pr]X[rq] = X[pq] ensures the cycle-consistency of the

matching results.

The iterative methods consider the cycle-consistency constraint during the whole variable

updating procedure. For example, in [22, 23], the authors wrote the objective function of

MGM into the following form∑
p,q,p ̸=q

vec(X[pr]X[rq])TK[pq]vec(X[pr]X[rq])

=
∑
p

vec(X[pr])T(
∑
q,q ̸=p

(X[qr] ⊗ I)TK[pq](X[qr] ⊗ I))vec(X[pr]),
(4)

where I is an identity matrix. Then, for a specific X[pr], the solution can be obtained by

solving a pairwise matching problem with the affinity matrix of K′[pr] =
∑

q,q ̸=p(X
[qr] ⊗

I)TK[pq](X[qr] ⊗ I). Notice that when any element in {X[qr]|q ̸= r} changes during iteration,

the affinity matrix K′[pr] needs to be regenerated to ensure the cycle-consistency. Besides, in

[23], the authors also introduced the factorization of the affinity matrix into their work, so

that the proposed method can be solved in a path-following way. However, due to the fact

that the proposed method needs to continuously generate the affinity matrix K′[pr] during

iteration, the computational complexity of the factorized version of their method is not

reduced.

Meanwhile, the one-shot methods optimize every pairwise graph matching problem in-

dependently, and obtain a matrix W that collects all pairwise results, i.e.,

W =


X[11] · · · X[1m]

... . . . ...

X[m1] · · · X[mm]

 . (5)

Notice that if the cycle-consistency is satisfied, the matrix W can be decomposed as W =

UTU, where U = [X[11], · · · ,X[1m]]. Most one-shot methods utilize the low-rank property of

W, and try to reconstruct a cycle-consistent W from the results of other pairwise matching

methods. It can be found that, after obtaining W, the affinity matrices are no longer in-

volved in further calculations. Thus, the one-shot methods are usually of low computational
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complexity. However, in the one-shot methods, no reinforcement is performed to further in-

crease the objective function of MGM. Therefore, when the same pairwise matching method

is used, the performance of the one-shot methods is generally worse than that of the iterative

methods.

Recently, a tensor form of the MGM problem is proposed, where the cycle-consistent

problem is naturally avoided. Let X ∈ {0, 1}n
[1]
v ×n

[2]
v ×···×n

[m]
v be the indicator tensor, and

Xi1:im = 1 indicates that the ith1 node in G [1], . . . , and the ithm node in G [m] are matched.

Notice that the subscript i1:im is the short for i1,i2,··· ,im , and Xi1:im is the element with the

index of i1, i2, · · · , im in the tensor X . Then, the tensor-based MGM can be formulated as

follows (without loss of generality, assume that the first graph has the smallest number of

nodes).
X̂ =argmax

X

∑
i1:im

Si1:imXi1:im +
∑

i1:im,j1:jm

Ki1:im,j1:jmXi1:imXj1:jm

=argmax
X

vec(S)Tvec(X ) + vec(X )TKvec(X )

s.t. X ∈ {0, 1}n
[1]
v ×n

[2]
v ×···×n

[m]
v ,

X ×2 1
[2] · · · ×m 1[m] = 1[1],

X ×1 1
[1] · · · ×m 1[m] ≤ 1[2],

· · · ,

X ×1 1
[1] · · · ×m−1 1

[m−1] ≤ 1[m],

(6)

where S ∈ Rn
[1]
v ×···×n

[m]
v is the node similarity tensor, and K ∈ R(n

[1]
v ···n[m]

v )×(n
[1]
v ···n[m]

v ) is

the affinity matrix in MGM. In (6), ×k represents the k-mode product of a tensor A ∈

RI1×I2×···×IK with a matrix B ∈ RIk×J , which is defined as follows in this paper

(A×k B)i1···j···iN =

Ik∑
ik=1

Ai1···ik···iKBikj. (7)

In addition, if Ki1:im,i1:im (the diagonal elements) equals Si1:im , the two parts of the objective

function can be integrated into one piece, i.e., vec(X )TKvec(X ).

Though there is no cycle-consistent constraint in the tensor-based MGM, the time and

space complexity of it geometrically increases with the number of graphs. Thus, the authors
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[25] adopted a simplified version in practice, where a tensor C ∈ R(n
[1]
v n

[2]
v )×···×(n

[m−1]
v n

[m]
v ) is

constructed so that

vec(S)Tvec(X ) = C ×1 vec(X
[12]) · · · ×m−1 vec(X

[(m−1)m]). (8)

Then, the simplified objective function can be written as follows

X̂[p(p+1)] =argmax
X[p(p+1)]

C ×1 vec(X
[12]) · · · ×m−1 vec(X

[(m−1)m])

+
m−1∑
p=1

vec(X[p(p+1)])TK[p(p+1)]vec(X[p(p+1)]).

(9)

Nonetheless, the computational complexity of the proposed algorithm still cannot be ignored.

In the section of complexity analysis in [25], the authors mentioned that it could cost 10

minutes for their method to match 12 graphs all with 10 nodes. Meanwhile, the existing

pairwise-based MGM methods usually cost only seconds to accomplish the same task.

3. Method

In this section, we first discuss the equivalence between the pairwise-based MGM and the

tensor-based MGM. Based on the equivalence, we proposed a new MGM method, where the

cycle-consistency problem is avoided. To further reduce the complexity, we introduce the

factorization of the affinity matrix into the proposed method. In addition, an approximation

algorithm based on the stochastic gradient descent is presented in this section to solve the

optimization problem in (9).

3.1. Pairwise-based and Tensor-based MGM

Assume that for all m graphs to be matched, there exists a virtual graph G [0], which has

n
[0]
v = min(n

[1]
v , · · · , n[m]

v ) nodes, and the indicator matrix between G [0] and G [i] is X[0i] ∈

{0, 1}n
[0]
v ×n

[i]
v . Similarly, X[i0] = X[0i]T is the indicator matrix between G [i] and G [0]. Then,

we have the following theorem for the overall indicator tensor X (the detailed derivation can

be seen in the appendix).
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Theorem 1. Let X[0i] be the indicator matrix between the virtual graph G [0] and the ith

graph G [i], then the indicator tensor X for all m graphs can be factorized as follows

X = I ×1 X
[01] ×2 X

[02] · · · ×m X[0m], (10)

where I is a diagonal tensor with the size of n[0]
v ×n

[0]
v ×· · ·×n

[0]
v , and the diagonal elements

are all ones.

Based on Theorem 1, when the affinity matrix K is specially constructed, the objective

function of the tensor-based MGM can be written into a pairwise form. The details are

given in Theorem 2, and the derivation can be seen in the appendix.

Theorem 2. When the affinity matrix K in the tensor-based MGM is specially constructed

as follows

Ki1:im,j1:jm =
∑

p,q,p ̸=q

K
[pq]
ipiq ,jpjq

,

where K[pq] is the affinity matrix between G [p] and G [q]. Then, the objective function in the

tensor-based MGM can be written as

vec(X )TKvec(X ) =
∑

p,q,p ̸=q

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q]). (11)

It can be found that if the virtual graph is selected as G [r], (11) is exactly the same as

(4), which is the objective function of the pairwise-based MGM methods. Therefore, the

pairwise-based MGM is actually a special case of the tensor-based MGM.

Furthermore, when the similarity between a set of features is given by the sum of all

possible pairwise similarities, the special construction of K in Theorem 2 is always satisfied.

Such a similarity measure strategy is natural and reasonable, and on this condition, the

equivalence presented in Theorem 2 is universal. For example, in Fig. 2, the whole similarity

for the three green labeled edges is given by the following equation

K111,222 = K
[12]
11,22 +K

[21]
11,22 +K

[13]
11,22 +K

[31]
11,22 +K

[23]
11,22 +K

[32]
11,22.
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Figure 2: Illustration of the special construction of the affinity matrix K in Theorem 2

3.2. Factorized MGM

From (10), it can be found that the correspondences between all graphs to be matched can

be completely determined by m indicator matrices {X[0i]|i = 1, · · · ,m}. Therefore, instead

of obtaining a cycle-consistent matching result for all graphs from the pairwise matching

results, we directly calculate the m indicator matrices {X[0i]|i = 1, · · · ,m} between the

virtual graph and the graphs to be matched. Moreover, a cycle-consistent matching result

can be obtained by setting X[pq] = X[p0]X[0q] for all p, q. Because there is no cycle-consistency

constraint between X[01], · · · ,X[0m], the cycle-consistency problem is avoided in the proposed

method.

Inspired by (11), the virtual graph is selected as one of the graphs to be matched, and

the indicator matrix X[p0] between G [p] and the virtual graph can be obtained by solving the

following two-graph matching problem:

X̂[p0] = argmax
X[p0]

vec(X[p0])TK′[p0]vec(X[p0]), (12)

where K′[p0] =
∑

q,q ̸=p(X
[q0]⊗ I)TK[pq](X[q0]⊗ I). Because X[q0] is a permutation matrix, the

computational complexity of generating K′[pr] can be reduced to O(mn3
v)[23] (without loss

of generality, we assume that all graphs have nv nodes and ne edges). However, it is still

unacceptable when there are numerous nodes.

We notice that in most pairwise matching methods, only the gradients of the objective

function to the variables are required. Therefore, we prefer to directly deduce the gradients
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for X[p0], which is

∇X[p0] = 2
∑
q,q ̸=p

mat(K[pq]vec(X[p0]X[0q]))X[q0]. (13)

In (13), mat(·) is used to reshape a vector into a matrix, and the derivation of the gradient is

presented in the appendix. By directly calculating the gradients, the procedure of generating

K′[p0] can be skipped. Moreover, the calculation of K[pq]vec(X[p0]X[0q]) can be accelerated

by introducing the lossless factorization of the affinity matrix in [17]. The details can be

seen in Theorem 3, and the corresponding derivation is given in the appendix.

Theorem 3. Let U = [X[01], · · · ,X[0m]] be a matrix that contains all solutions, then the

objective function of the MGM problem can be written as

J(U) =
∑

p,q,p ̸=q

vec(D[pq])Tvec(V[p]TX[p0]X[0q]V[q])◦2, (14)

where

D[pq] =

 T[pq] −T[pq]H[q]21

−H[p]12T[pq] H[p]12T[pq]H[q]21 + S[pq]

 ,

and ◦2 represents the element-wise power of 2. In this case, the gradient of J(U) to X[p0] is

∇X[p0] = 2
∑
q,q ̸=p

V[p](D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))V[q]TX[q0],

where ◦ represents the element-wise multiplication.

In the following, we present an approximation algorithm that can efficiently obtain the

solutions for the proposed factorized MGM model.

3.3. Optimization of Factorized MGM

It can be found that any graph in {G [1], · · · ,G [m]} could be selected as the virtual graph

G [0], and for each different virtual graph, the solution could be different. In order to find

the best choice of the virtual graph, we follow the procedure in [23], where the pairwise

matching results are required.

In this paper, the famous Reweighted Random Walks for Graph Matching (RRWM)

[26] is adopted as the pairwise matching method. The pseudocode of RRWM is given in
11



Algorithm 1. When two graphs G [p] and G [q] are to be matched, the corresponding gradient

∇X[pq] in Algorithm 1 has the following expression (the detailed derivations of (15) is given

in the appendix)

∇X[pq] = 2V[p](D[pq] ◦ (V[p]TX[pq]V[q]))V[q]T . (15)

Algorithm 1 The workflow of RRWM
Input: The parameters α, β (α = 0.2, β = 30 by default), and the objective function.

Output: The pair-wise matching result X.

1: Initialize X as an all-ones matrix.

2: repeat

3: Calculate the gradient of X, which is ∇X.

4: Reweight: Y = exp(β∇X/max∇X).

5: repeat

6: Row normalization: Yab = Yab/
∑

b Yab.

7: Column normalize: Yab = Yab/
∑

a Yab.

8: until Y converges

9: Update X by X = α∇X+ (1− α)Y.

10: until X converges

11: Discretize X.

After the pairwise matching results W is obtained, let U[r] be [X[r1],X[r2], · · · ,X[rm]].

Then the virtual graph G [0] is set as G [r] that has the minimum value of ||W−U[r]TU[r]||F ,

i.e., the one corresponding to the best low-order approximation, where || · ||F represents the

Frobenius norm. And the corresponding matrix U[r] is selected as the initial solution of

U = [X[01], · · · ,X[0m]] for the next step.

Notice that X[r1], · · · ,X[rm] are all permutation matrices, thus, the computational com-

plexity of calculating X[pr]X[rq] can be reduced to O(nv). Thus, the computational com-

plexity of generating U[r]TU[r] is O(m2nv), and that of determining the best virtual graph

is O(m3nv).
12



Algorithm 2 The workflow of further optimization
Input: The m graphs to be matched, the index of the virtual graph r, and corresponding

matching result U.

Output: The pairwise matching result W.

1: Backup the solution: U′ = U.

2: repeat

3: for p = 1:m and p ̸= r do

4: Use RRWM to update X[p0] according to the global gradient ∇X[p0].

5: if U ̸= U′ and J(U) < J(U′) then

6: Restore previous result: U = U′.

7: else

8: Backup the solution: U′ = U.

9: end if

10: end for

11: until U converges {Global updating.}

12: repeat

13: for p = 1:m and p ̸= r do

14: for q = 1:m and q ̸= p do

15: Use RRWM to update X[p0] according to the local gradient ∇X
[p0]
q .

16: if U ̸= U′ and J(U) < J(U′) then

17: Restore previous result: U = U′.

18: else

19: Backup the solution: U′ = U.

20: end if

21: end for

22: end for

23: until U converges {Local updating.}

24: Calculate W by W = UTU.
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In conventional iterative MGM methods, to further optimize the solutions, X[p0] is up-

dated according to the global gradient ∇X[p0]. However, we find that such a strategy could

quickly get stuck in a local maximum due to the integer constraints. Therefore, inspired

by the stochastic gradient descent method, we additionally adopt a local updating strategy,

which is given in the following.

For a specific pair of p and q, we first obtain a solution of X[p0] by setting the following

formulation as the objective function in Algorithm 1:

X̂[p0] = argmax
X[p0]

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q])

= argmax
X[p0]

vec(D[pq])Tvec(V[p]TX[p0]X[0q]V[q])◦2.
(16)

Notice that the objective function in (16) is actually a part of the global objective function

J(U), and the corresponding local gradient ∇X
[p0]
q can be simply given by

∇X[p0]
q = 2V[p](D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))V[q]TX[q0].

If the overall objective function J(U) increases after updating X[p0] in U, then the updated U

is saved, otherwise, the previous U will continue to be used. The algorithm will continuously

traverse all possible p and q, until U converges. The complete pseudocode of our method

can be seen in Algorithm 2.

In the proposed method, not only the cycle-consistency problem is avoided, but also

the costly affinity matrix. Besides, in each iteration, the most time-consuming part is to

calculate the gradient ∇X[pq] or ∇X
[p0]
q . Since V[p],V[q] are binary matrices, and X[p0],X[q0]

are permutation matrices, the computational complexity of calculating the gradients can be

greatly reduced, which is O((nv + ne)
2). Therefore, the whole computational complexity of

our algorithm is O(m3nv + km2(nv + ne)
2), where k is a variable that relates to the number

of iterations.

4. Experiments

In this paper, four experiments are carried out, including one synthetic dataset and three

real datasets. Our method, namely Factorized Multi-Graph Matching (FMGM), is compared
14



with five other MGM methods: Three one-shot methods, including solving the multi-way

matching problem by permutation synchronization (MatchSync) [19], near-optimal joint

object matching via convex relaxation (MatchLift) [20], and multi-image matching via fast

alternating minimization (MatchALS) [21]; Two iterative methods, including joint optimiza-

tion for consistent MGM (JOMGM) [22], and consistency-driven alternating optimization for

MGM (CDMGM) [23]. Notice that the factorized version of CDMGM is of higher computa-

tional complexity, but the performance is not significant improved, and sometimes could be

worse. Thus, the non-factorized version of CDMGM is used for comparison. In addition, a

simple method that directly uses the pairwise matching method to find the correspondences

between the first graph and the left graphs is also evaluated as a reference, which is denoted

Origin.

In JOMGM, the pairwise matching method Integer Projected Fixed Point (IPFP) [27] is

recommended, while in CDMGM and our method FMGM, the pairwise matching method

RRWM [26] is used. Therefore, in the Origin method and three one-shot methods, RRWM

is selected as the pairwise matching solver for fair comparisons. Besides, the codes of the

three one-shot methods are from [28]. The left methods are coded by us and the default

parameters recommended in the papers are used. In addition, the Hungarian method [12]

is used to discretize the solution for all methods.

Notice that in all four experiments, the nodes of the graphs are associated with 2D loca-

tions. Therefore, all graphs are constructed by generating the sparse delaunay triangulation

among the nodes. By following the previous works, the similarity between two nodes or

edges are given by the Gaussian kernel exp(−∥fi − fj∥/σ), where fi and fj are the cor-

responding feature vectors of two nodes or edges, and σ is the normalization factor. The

matching accuracy, which is defined as the number of correctly matched inliers divided by

the total number of inliers, is used as the evaluation metric.

4.1. Synthetic Dataset

In this experiment, we randomly generate 10 points on a 2D plane for each trail. To test

the anti-noise performance of all methods, different zero-mean Gaussian noise is added to
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the coordinates of the nodes to generate numerous similar graphs. In addition to noise, the

influence of outliers is also evaluated. Furthermore, for each setting, 200 sets of graphs are

generated, and the mean accuracy of the matching results is used to evaluate all methods. In

the anti-noise experiment, the standard deviation of the Gaussian noise ranges from 0 to 0.2.

In the anti-outlier experiment, the number of outliers ranges from 0 to 5. For each pair of

graphs, the node-to-node similarity matrix is set to 0. The edge-to-edge similarity matrix is

generated by using the length of the edges as the feature, and σ is set as 0.1max(∥fi−fj∥).

Moreover, in both experiments, all methods are implemented to match different number of

graphs. The results of the experiments can be seen in Figs. 3 and 4.
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Figure 3: The results of anti-noise experiment (a) 3 graphs (b) 6 graphs (c) 9 graphs (d) 12 graphs

It can be found from Figs. 3 and 4 that as there are more graphs required to be matched,

the matching accuracy of all methods generally decrease. This is because a correct matching

result requires all pairwise matching results to be correct. Hence, as there are more graphs,

achieving a correct matching result becomes more difficult. It can be seen in Figs. 3a and 4a
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Figure 4: The results of anti-outlier experiment (a) 3 graphs (b) 6 graphs (c) 9 graphs (d) 12 graphs

that, when there are 3 graphs to be matched, the performance of all MGM methods is

close to that of Origin. However, as the number of graphs increases, the accuracy of them

gradually becomes higher than that of Origin, which indicates the superiority of considering

all possible pairwise matching results. The accuracy curves of the three one-shot methods

in Figs. 3 and 4 are close to each other in different settings, which is because they share the

same input. In general, under varying parameters, our method FMGM achieves the best

accuracy over all other methods in both experiments, especially when the number of graphs

is large.

4.2. CMU House/Hotel Dataset

The CMU House/Hotel dataset contains a sequence of image of the same object taken

from different viewpoints. More specifically, the CMU House dataset contains 111 frames

of a toy house with 30 labeled landmark points in each frame, and the CMU Hotel dataset

contains 101 frames of a toy hotel with 30 labeled landmark points in each frame. Some
17



example images of the CMU House/Hotel dataset is shown in Fig. 5, from which, it can be

seen that the larger the sequence gap, the more different the angle of the viewpoints.

(a) (b)

Figure 5: Some frames of the CMU House/Hotel Dataset (for better visualization, only the correspondences

of the first 10 nodes are plotted) (a) the 1, 41, 81 frames of the house dataset (b) the 1, 41, 81 frames of the

hotel dataset

Similar to the synthetic experiment, we only rely on the length of the edges, and the

same σ is used. For each trail, we randomly select m graphs from the CMU house or hotel

dataset, and 10 labeled landmark points are also randomly selected for each graph. The

number of graphs m ranges from 4 to 12, and for each m, 2000 implementations are carried

out to obtain a statistical result, which can be seen in Fig. 6. Besides, we also evaluate the

performance of all methods when there exist outliers, the results are shown in Fig. 7, where

4 graphs with sequence gap ranges from 1 to 20 are required to be matched.

It can be seen from Fig. 6 that, since the inputs of the three one-shot methods are

the same, they are similar in performance. Because using a different pairwise solver, the

performance of JOMGM is worse than other MGM methods. Meanwhile, it can be found

from Fig. 6 that when there is no noise or outlier, the matching performance of all MGM

methods is sensitive to the number of graphs. The iterative methods CDMGM and FMGM

continue increasing the objective function during optimization, thus, they outperform all

other methods in accuracy. Moreover, because of the effective optimization strategy used in

FMGM, our method achieves a higher accuracy over all other methods. In Fig. 7, due to
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Figure 6: The results of the CMU house/hotel dataset (no outlier) (a) CMU house (b) CMU hotel
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Figure 7: The results of the CMU house/hotel dataset (with outlier) (a) CMU house with 2 outliers (b)

CMU house with 5 outliers (c) CMU hotel with 2 outliers (d) CMU hotel with 5 outliers

the existence of outliers, the performance of all methods is degraded, especially when the

sequence gap is large. However, the matching accuracy of FMGM is still higher than other

methods in all settings. This further demonstrates the superiority of our method.
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4.3. Willow Object Dataset

In this section, the Willow Object dataset [29], which contains a total of 256 images

from 5 categories, is used to evaluate the performance of all methods. There are at least 40

images in each category of the Willow Object dataset, and each image is annotated with the

same 10 distinctive category specific keypoints. Some images of the Willow Object dataset

are shown in Fig. 8.

(a) (b) (c)

Figure 8: Some examples of the Willow dataset (a) three images of the car category (b) three images of the

duck category (c) three images of the motorbike category

We first carry out an experiment on a subset of the Willow Object dataset, which is

denoted by PF-Willow dataset in [30]. The PF-Willow dataset splits the Willow Object

dataset into 10 subclasses, including car(G), (S), (M), duck(S), motorbike(G), (S), (M), and

winebottle(woC), (wC), (M). Notice that (G), (S), (M) represent general, side and mixed

viewpoints, respectively, and (C) denotes the background clutter. In each subclass, there

are 10 images, and all methods are applied to match them all at a time.

Due to the fact that the object appearance in each class varies greatly, in addition to

the edges, we also adopt the node features extracted from a pretrained convolutional neural

network as the literature [28] did. The pretrained convolutional neural network [31] extracts

a 640×1 feature vector for every node, which is used to generate the node-to-node similarity

matrix of each pair of graphs. As for the edge, a vector [l, θ]T is taken as its feature, where l

is the normalized length of the edge and θ is the angle between the edge and the horizontal

line. Besides, in the node-to-node similarity matrix and the edge-to-edge similarity matrix,

σ is set as 0.25max(∥fi−fj∥) to map the distance to similarity. The matching result is listed
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Table 1: The matching accuracy of the PF-Willow dataset
Origin MatchSync MatchLift MatchALS JOMGM CDMGM FMGM

car(G) 0.6 0.8 0.8 0.8 1.0 1.0 1.0

car(S) 0.2 0.8 0.8 0.8 1.0 1.0 1.0

car(M) 0.1 0.5 0.7 0.7 1.0 1.0 1.0

duck(S) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

motorbike(G) 0.8 1.0 1.0 1.0 1.0 1.0 1.0

motorbike(S) 1.0 1.0 1.0 1.0 0.8 1.0 1.0

motorbike(M) 0.8 1.0 1.0 1.0 0.8 1.0 1.0

winebottle(M) 0.6 0.6 0.6 0.6 0.6 0.6 1.0

winebottle(wC) 0.2 0.8 0.8 0.8 0.2 0.6 1.0

winebottle(woC) 0.6 0.8 0.8 0.8 0.8 0.8 0.8

mean 0.59 0.83 0.85 0.85 0.82 0.90 0.98

in Table 1, from which, it can be found that FMGM obtains the highest matching accuracy

for all subclasses, and the mean accuracy is also obviously higher than other methods.

In addition, we also compare the performance of all methods on the whole Willow Object

dataset. In this part, we randomly select m images from the same category, and then match

them all at a time. The number of images m ranges from 3 to 15, and for each m, we repeat

the experiment for 500 times to obtain a statistical result. The average matching accuracy

of all methods is shown in Fig. 9.

From Fig. 9c, it can be found that all methods are able to achieve a perfect matching

result for the face category. In Figs. 9a and 9b, it can be seen that, for the car and duck

categories, the matching accuracy of all methods generally decreases with the increase of

number of graphs. However, for the motorbike and winebottle categories, CDMGM and

FMGM could obtain a better matching result when the number of graphs increases. This

is because the appearances of the motorbike and winebottle categories are more stable than

those of the car and duck categories. In this case, when more images are required to be

matched, more information can be utilized to improve the matching accuracy. From the

mean accuracy curves shown in Fig. 9f, it can be found that FMGM always obtains the

best matching results under different numbers of graphs. This further demonstrates the
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Figure 9: The matching accuracy of all methods on the Willow Object dataset (a) car (b) duck (c) face (d)

motorbike (e) winebottle (f) mean accuracy of all objects

effectiveness of the proposed approximation algorithm in FMGM.

4.4. Pascal Visual Object Classes Dataset

In this section, the famous Pascal Visual Object Classes (VOC) dataset [32] is used to

evaluate the performance of the proposed method. The Pascal VOC dataset contains 10,103

images, which are divided into 20 object categories, including plane, bicycle, bird, boat,

bottle, bus, car, cat, chair, cow, table, dog, horse, motorbike, person, plant, sheep, sofa,

train, and tvmonitor. For the objects in the images, the number of annotated keypoints

ranges from 2 to 20. Therefore, for convenience, we only select the images with more than 4

annotated keypoints for each category. In addition, for each trail, we randomly select four

annotated keypoints to match. The experimental setup is the same as that of the Willow

Object dataset experiment. The average matching results of 500 runs are listed in Tables 2

and 3, where the number of graphs required to be matched are 3 and 6, respectively.
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Table 2: The matching accuracy of the Pascal VOC dataset (3 graphs)
Origin MatchSync MatchLift MatchALS JOMGM CDMGM FMGM

plane 0.2655 0.258 0.2655 0.2655 0.3095 0.291 0.304

bicycle 0.156 0.1495 0.156 0.156 0.172 0.1635 0.1675

bird 0.152 0.1555 0.152 0.152 0.192 0.1665 0.1725

boat 0.184 0.184 0.184 0.184 0.188 0.1845 0.2085

bottle 0.1235 0.11 0.1235 0.1235 0.1225 0.124 0.1235

bus 0.59 0.563 0.59 0.59 0.6515 0.671 0.6785

car 0.308 0.307 0.308 0.308 0.3365 0.318 0.337

cat 0.732 0.727 0.732 0.732 0.7855 0.7605 0.788

chair 0.3205 0.3115 0.3205 0.3205 0.373 0.381 0.4005

cow 0.782 0.78 0.782 0.782 0.855 0.828 0.8565

table 0.241 0.2235 0.241 0.241 0.287 0.279 0.3105

dog 0.7275 0.7335 0.7275 0.7275 0.7875 0.7535 0.791

horse 0.7725 0.7765 0.7725 0.7725 0.8185 0.812 0.8325

motorbike 0.2145 0.2075 0.2145 0.2145 0.238 0.2365 0.248

person 0.415 0.3935 0.415 0.415 0.4905 0.5155 0.5335

plant 0.4955 0.5005 0.4955 0.4955 0.564 0.5215 0.549

sheep 0.6585 0.6725 0.6585 0.6585 0.7475 0.7115 0.7495

sofa 0.453 0.445 0.453 0.453 0.5465 0.5675 0.5775

train 0.61 0.5707 0.61 0.61 0.656 0.636 0.656

tvmonitor 0.4685 0.461 0.4685 0.4685 0.547 0.5535 0.5645

mean 0.4335 0.4265 0.4335 0.4335 0.4834 0.4737 0.4924

It can be found that the matching accuracy of the Origin method in Table 3 is much

lower than that in Table 2. The reason is that the Origin method does not consider all

pairwise matching results. Hence, when there are more graphs, the error would accumulate.

Though the performance of the MGM methods is better than that of Origin, it can be

seen that the improvement of the MGM methods is limited for those classes with matching

accuracy lower than 0.5. In addition, as can be seen in Tables 2 and 3, FMGM achieves

the highest matching accuracy for most classes, and is more efficient than other methods

when the number of graphs is 6. This indicates the superiority of the proposed method in
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Table 3: The matching accuracy of the Pascal VOC dataset (6 graphs)
Origin MatchSync MatchLift MatchALS JOMGM CDMGM FMGM

plane 0.0665 0.1115 0.122 0.1255 0.141 0.127 0.155

bicycle 0.016 0.025 0.026 0.026 0.0315 0.029 0.034

bird 0.017 0.021 0.0225 0.022 0.0375 0.0335 0.043

boat 0.013 0.021 0.0225 0.021 0.0265 0.0265 0.0215

bottle 0.005 0.0025 0.007 0.0055 0.0035 0.0035 0.004

bus 0.3065 0.4815 0.4775 0.472 0.5315 0.6 0.625

car 0.1015 0.1895 0.188 0.199 0.2005 0.1945 0.2175

cat 0.5735 0.691 0.6895 0.6885 0.6905 0.703 0.7015

chair 0.106 0.2015 0.217 0.2175 0.254 0.2675 0.341

cow 0.6025 0.8435 0.8545 0.845 0.844 0.8725 0.879

table 0.036 0.0685 0.0705 0.072 0.095 0.1025 0.1675

dog 0.493 0.704 0.711 0.7075 0.731 0.734 0.76

horse 0.518 0.7065 0.7145 0.718 0.7495 0.76 0.796

motorbike 0.053 0.085 0.0935 0.095 0.1145 0.1015 0.1225

person 0.1615 0.3285 0.3395 0.3345 0.3905 0.477 0.565

plant 0.2665 0.3925 0.4045 0.3985 0.4175 0.4005 0.416

sheep 0.4385 0.6175 0.6245 0.6215 0.6855 0.6555 0.695

sofa 0.164 0.3415 0.3435 0.336 0.399 0.488 0.5665

train 0.4033 0.4987 0.496 0.4973 0.5193 0.5213 0.516

tvmonitor 0.198 0.309 0.31 0.3095 0.3425 0.379 0.4505

mean 0.227 0.332 0.3367 0.3356 0.3602 0.3738 0.4038

matching multiple graphs.

4.5. Computational Complexity Analysis

Another major advantage of FMGM is its low computational complexity, which is demon-

strated in Fig. 10 and Table 4. In Fig. 10a, the number of nodes is set to 20, and the number

of graphs ranges from 4 to 20. And in Fig. 10b, the number of graphs is set to 3, and the

number of nodes ranges from 10 to 50. All methods are implemented in MATLAB 2022a

on an i5-1155G7 CPU and 16GB RAM computer for 20 times.

In MatchSync, after obtaining the pairwise result W, the algorithm only needs to cal-
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Figure 10: The computational time of the MGM methods (a) time vs number of graphs (b) time vs number

of nodes

Table 4: The complexity comparison of the MGM methods
method time complexity

MatchSync [23] O(m2n3
v) + τpair

MatchLift [21] O(km3n3
v) + τpair

MatchALS [21] O(km2n3
v) + τpair

JOMGM [22] O(km2n3
v + km(n2

v + n2
e))

CDMGM [23] O(m3nv + km2n3
v + km(n2

v + n2
e)) + τpair

Tensor-based [25] O(km2nm
v + kmn6

v)

FMGM O(m3nv + km2(nv + ne)
2) + τpair

τpair is the computational complexity of calculating the pairwise matching results, which is

O(m2(n2
v + n2

e)) when using RRWM

k represents the number of iterations, which varies for different methods

culate the singular value decomposition of the matrix W. Therefore, the computational

complexity of MatchSync is the lowest comparing with other MGM methods. Because

MatchLift is based on the costly semidefinite programming, its computational time is close

to that of the two iterative methods JOMGM and CDMGM as can be seen in Fig. 10.

Though the computational complexity of JOMGM is lower than that of CDMGM (Table 4),

but its computational time is generally higher than that of CDMGM (Fig. 10). After some

investigation, we find the reason is that JOMGM usually takes much more iterations to

obtain a converged solution.

From Table 4, it can be found that comparing with the tensor-based MGM methods,
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whose computational complexity grows geometrically with the size of graphs, FMGM is

much more efficient. Due to the procedure of determining the best virtual graph, whose

computational complexity is O(m3nv), the computational time of FMGM increases faster

than that of MatchALS (Fig. 10a) and gradually becomes close to that of CDMGM. Mean-

while, in Fig. 10b, it can be seen that, when matching graphs with numerous nodes, FMGM

costs less time than MatchALS does. This is because of the proposed efficient gradient calcu-

lation formula, which is insensitive to the number of nodes. In summary, the computational

complexity of FMGM is close to that of the one-shot methods, and is lower than that of the

iterative methods. Therefore, considering the superiority of FMGM in matching accuracy

over other methods, it is recommended in most cases, especially when there are plenty of

nodes in the graphs.

5. Conclusion

In this paper, we demonstrate that the pairwise-based MGM is a special case of the

tensor-based MGM. Based on this finding, a new MGM method is proposed, where not

only the complexity is reduced, but also the cycle-consistency problem is avoided. Besides,

the factorization of the affinity matrix is introduced into our work to further reduce the

complexity. In order to alleviate the local maximum problem in MGM, we also present

an approximation algorithm based on the stochastic gradient descent method. Both the

synthetic and real data experiments demonstrate the efficiency and accuracy of our method.

However, due to the updating strategy used in the approximation algorithm, FMGM could

cost more time to find a better solution when the number of graphs is large. Besides, when

there exists a complex relationship between the graphs to be matched, the performance of

FMGM may be unsatisfactory. How to overcome the mentioned two limitations of FMGM

will be our future research topics.
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Appendix A. Detail Proofs of the Theorems

Theorem 1. Let X[0i] be the indicator matrix between the virtual graph G [0] and the ith

graph G [i], then the indicator tensor X for all m graphs can be factorized as follows

X = I ×1 X
[01] ×2 X

[02] · · · ×m X[0m], (10)

where I is a diagonal tensor with the size of n[0]
v ×n

[0]
v ×· · ·×n

[0]
v , and the diagonal elements

are all ones.

Proof. In the matrix X[0n], the (i0, in) element is 1, if the ith0 node in G [0] and the ithn node

in G [n] is matched. Similarly, if ith1 node in G [1], ..., and ithm node in G [m] are matched, Xi1:im

equals 1.

Assume that ith0 node in G [0], ith1 node in G [1], ..., and ithm node in G [m] are matched. Let

X ′ = I×1X
[01]×2X

[02] · · ·×mX[0m], then according to the definition of the k-mode product,

it can be calculated by

X ′
j1:jm

=
∑
l1:lm

Il1:lmΠ
m
k=1X

[0k]
lkjk

. (A.1)

Notice that only when l1 = · · · = lm, Il1:lm equals 1,and X
[0k]
lkjk

equals 1, only when lk =

i0, jk = ik. Thus, Il1:lmΠ
m
k=1X

[0k]
lkjk

equals 1, only when i0 = l1 = · · · = lm, and j1 =

i1, · · · , jm = im. This indicates that X ′
j1:jm

equals 1, only when j1 = i1, · · · , jm = im, i.e.,

X = X ′. □

Theorem 2. When the affinity matrix K in the tensor-based MGM is specially constructed

as follows

Ki1:im,j1:jm =
∑

p,q,p ̸=q

K
[pq]
ipiq ,jpjq

,

where K[pq] is the affinity matrix between G [p] and G [q]. Then, the objective function in the

tensor-based MGM can be written as

vec(X )TKvec(X ) =
∑

p,q,p ̸=q

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q]). (11)
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Proof. Let K̂[pq] be a matrix, which has the following expression

K̂
[pq]
i1:im,j1:jm

= K
[pq]
ipiq ,jpjq

. (A.2)

Then the affinity matrix K can be written as

K =
∑

p,q,p ̸=q

K̂[pq]. (A.3)

Notice that the matrix K̂[pq] can be written as follows

K̂
[pq]
i1:im,j1:jm

=
∑

kpkq ,lplq

K
[pq]
kpkq ,lplq

(1
[m]
im

· · · I[q]kqiq
· · · I[p]kpip

· · · 1[1]
i1
)(1

[m]
jm

· · · I[q]lqjq
· · · I[p]lpjp

· · · 1[1]
j1
),

(A.4)

where 1[i] represents an all-ones n
[i]
v × 1 vector, and I[p] represents an identity matrix with

the size of n[p]
v ×n

[p]
v . Because (1

[m]
im

· · · I[q]kqiq
· · · I[p]kpip

· · · 1[1]
i1
) equals the element with the index

of (i1 : im, kpkq) in (1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1]), K̂[pq] can be further written as

K̂
[pq]
i1:im,j1:jm

=
∑

kpkq ,lplq

K
[pq]
kpkq ,lplq

(1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1])i1:im,kpkq

(1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1])j1:jm,lplq

=(1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1])K[pq](1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1])T.

(A.5)

Notice that

(1[m] · · · ⊗ I[q] · · · ⊗ I[p] · · · ⊗ 1[1])Tvec(X )

=vec(X ×1 1
[1] · · · ×p I

[p] · · · ×q I
[q] · · · ×m 1[m])

=vec(I ×1 X
[01]1[1] · · · ×p X

[0p]I[p] · · · ×q X
[0q]I[q] · · · ×m X[0m]1[m])

=vec(I ×1 1
[0] · · · ×p X

[0p] · · · ×q X
[0q] · · · ×m 1[0])

=vec(X[p0]X[0q]),

(A.6)

therefore, we have

vec(X )TKvec(X )

=
∑

p,q,p ̸=q

vec(X )TK̂[pq]vec(X )

=
∑

p,q,p ̸=q

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q]).

(A.7)

□
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Theorem 3. Let U = [X[01], · · · ,X[0m]] be a matrix that contains all solutions, then the

objective function of the MGM problem can be written as

J(U) =
∑

p,q,p ̸=q

vec(D[pq])Tvec(V[p]TX[p0]X[0q]V[q])◦2, (14)

where

D[pq] =

 T[pq] −T[pq]H[q]21

−H[p]12T[pq] H[p]12T[pq]H[q]21 + S[pq]

 ,

and ◦2 represents the element-wise power of 2. In this case, the gradient of J(U) to X[p0] is

∇X[p0] = 2
∑
q,q ̸=p

V[p](D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))V[q]TX[q0],

where ◦ represents the element-wise multiplication.

Proof. According to the factorization of the second-order affinity matrix, it can be indicated

that

K[pq] = (V[q] ⊗V[p])diag(D[pq])(V[q] ⊗V[p])T, (A.8)

where

D[pq] =

 T[pq] −T[pq]H[q]21

−H[p]12T[pq] H[p]12T[pq]H[q]21 + S[pq]

 .

Therefore, the factorization of the objective function is

vec(X)TKvec(X)

=
∑
p ̸=q

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q])

=
∑
p≠q

vec(X[p0]X[0q])T(V[q] ⊗V[p])diag(D[pq])(V[q] ⊗V[p])Tvec(X[p0]X[0q])

=
∑
p ̸=q

vec(V[q]TX[p0]X[0q]V[q])Tdiag(D[pq])vec(V[q]TX[p0]X[0q]V[q])

=
∑

p,q,p ̸=q

vec(D[pq])Tvec(V[q]TX[p0]X[0q]V[q])◦2.

(A.9)
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In addition, the gradient is

∇X[p0] = 2
∑
q,q ̸=p

mat(K[pq]vec(X[p0]X[0q]))X[q0]

=2
∑
q,q ̸=p

mat((V[q] ⊗V[p])Tdiag(D[pq])vec(V[q]TX[p0]X[0q]V[q]))X[q0]

=2
∑
q,q ̸=p

mat((V[q] ⊗V[p])Tvec(D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))X[q0]

=2
∑
q,q≠p

mat(vec(V[p](D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))V[q]T))X[q0]

=2
∑
q,q ̸=p

V[p](D[pq] ◦ (V[p]TX[p0]X[0q]V[q]))V[q]TX[q0].

(A.10)

□

Appendix B. Derivations of the Gradients

The derivation of the gradient ∇X[p0]: The objective function is∑
p,q,p ̸=q

vec(X[p0]X[0q])TK[pq]vec(X[p0]X[0q])

=
∑
p

vec(X[p0])T(
∑
q,q ̸=p

(X[q0] ⊗ I)TK[pq](X[q0] ⊗ I))vec(X[p0]).
(B.1)

Thus, the gradient ∇X[p0] can be deduced as follows

∇X[p0] =2(
∑
q,q ̸=p

(X[q0] ⊗ I)TK[pq](X[q0] ⊗ I))vec(X[p0])

=2
∑
q,q ̸=p

(X[q0] ⊗ I)TK[pq]vec(X[p0]X[0q])

=2
∑
q,q ̸=p

Imat(K[pq]vec(X[p0]X[0q]))X[q0]

=2
∑
q,q ̸=p

mat(K[pq]vec(X[p0]X[0q]))X[q0].

(B.2)

The derivation of the gradient ∇X[pq]: The objective function is

vec(X[pq])TK[pq]vec(X[pq]). (B.3)
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It can be simply indicated that the gradient is

∇X[pq] = 2mat(K[pq]vec(X[pq])). (B.4)

By substituting the factorization of the affinity matrix, the gradient can be further written

as

∇X[pq] =2mat((V[q] ⊗V[p])diag(D[pq])(V[q] ⊗V[p])Tvec(X[pq]))

=2mat((V[q] ⊗V[p])diag(D[pq])vec(V[p]TX[pq]V[q]))

=2mat((V[q] ⊗V[p])vec(D[pq] ◦ (V[p]TX[pq]V[q])))

=2V[p](D[pq] ◦ (V[p]TX[pq]V[q]))V[q]T .

(B.5)
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