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Abstract— Translation matching is one of the most fundamen-
tal problems in the field of image matching, and the normalized
cross-power spectrum (NCPS)-based methods have achieved
great success regarding this problem. However, when the images
to be matched are seriously corrupted by noise, most current
NCPS-based methods cannot obtain satisfactory results. Besides,
the 2-D phase extraction of the NCPS, which is required in
most NCPS-based methods, may cause an additional error to
the final result. In this article, we proposed the concept of
autocorrelated NCPS (ANCPS) that is theoretically proved to be
able to significantly alleviate the influence of noise and developed
a new method based on it. Furthermore, by utilizing the property
of equal phase interval of ANCPS, the 2-D phase extraction
problem is also naturally avoided in our method. The experiments
with simulated and real data demonstrate that the presented
method has a better performance in both accuracy and antinoise
performance compared with state-of-the-art methods.

Index Terms— Antinoise, autocorrelated normalized
cross-power spectrum (ANCPS), translation matching.

I. INTRODUCTION

H IGH-ACCURACY image registration is an important
task in many fields [1]–[6], such as remote sensing [7],

[8], computer vision [9], and so on [10], [11]. Recently, many
methods using the normalized cross-power spectrum (NCPS)
[12]–[15] have been developed to address the translation
matching problem, which are more accurate and effective than
the commonly used correlation methods [16]–[19]. Assume
that there are two M × N images f (m, n), g(m, n), and
the displacements between them are m0 and n0. Therefore,
the relationship between them can be written as

f (m, n) = g(m − m0, n − n0). (1)

Conducting the discrete Fourier transform (DFT) on both sides
of the equation, we have

F(u, v) = G(u, v)e− j2π(um0/M+vn0/N) (2)
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where F(u, v) and G(u, v) are the DFT of f (m, n) and
g(m, n), respectively, and u and v are the coordinates in the
frequency domain. Then, NCPS is defined as

S(u, v) = F(u, v)G∗(u, v)

|F(u, v)G∗(u, v)| = e j2π(um0/M+vn0/N) (3)

where * stands for the complex conjugate. The phase only
correlation (POC) function s(m, n) is the inverse DFT (IDFT)
of S(u, v)

s(m, n) = IDFT(S(u, v)) = δ(m − m0, n − n0) (4)

where δ is the impulse function [20]. Typically, we can solve
the registration problem by locating the peak of s(m, n).
In order to achieve subpixel accuracy, many methods have
been developed. All NCPS-based matching methods can be
roughly classified into two categories [21].

In the first category [22]–[24], the most commonly used
approach to estimate the subpixel offset is based on the
determination of (m, n) that maximizes s(m, n). In [25],
by padding zeros to NCPS, an upsampled POC function can
be obtained. In order to achieve 1/k pixel accuracy, the NCPS
matrix has to be padded to the size of kM × k N . Therefore,
the method becomes much time-consuming when k is large.
In [26], an improved method, namely, IDFT-US, is proposed
to increase the speed of the upsampling: it first computes
the initial estimation of the displacements according to the
conventional IDFT method with an upsampling factor k = 2,
and then, a much larger k is applied to the data in a 1.5 × 1.5
neighborhood around the initial estimation. In [27], an analytic
model of the correlation peak is used to fit the 2-D numerical
data array. Because the peak of the POC function is very
sharp, usually, 3 × 3 ∼ 9 × 9 data points around the peak
are enough to achieve high-accuracy function fitting. As is
well known, the high-frequency components of NCPS are
more easily affected by noise [28]. Therefore, a low-pass-
type weighting function can be applied to NCPS for higher
accuracy. However, IDFT assumes the noise as additive white
Gaussian noise, which is usually inconsistent with the real
situation. Thus, the obtained POC function will inevitably
deviate from the true value, from which a high-accuracy
displacement estimation is almost impossible.

The second category [18], [29], [30] estimates the displace-
ments between two images by linearly fitting the phase of
S(u, v), which is a plane in theory after phase unwrapping.
However, the 2-D phase unwrapping is much more compli-
cated than the 1-D phase unwrapping. In order to avoid 2-D
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phase unwrapping, Stone et al. [18] first registered the integer
part by using the conventional IDFT method. Then, the least-
squares (LS) algorithm was used to fit the phase of S(u, v)
filtered by the removal of high-frequency and small-magnitude
components, which are more susceptible to the noise. Since the
integer part has been registered, the left displacement should
be less than one pixel, which means that there is no phase
wrap in S(u, v). By introducing the cyclic shift matrix (CSM)
to the translation matching problem, Geng and Yang [31]
obtained the LS solution of this problem, which is proved
to be equivalent to Stone’s method. In addition, Geng and
Yang [31] also proved that, as there exist unmatched areas
between the two images, all NCPS-based methods cannot
obtain the exact solution. To solve this problem, the CSM
method iteratively applies the CSM to reduce the impact
of the unmatched areas. However, the noise in NCPS gen-
erally does not obey the Gaussian distribution; thus, when
the noise is large, the displacements estimated by LS-based
plane fitting will have a large deviation from the exact value.
Hoge [32] proposed a straightforward method using singular
value decomposition (SVD) to find the dominant rank-one
approximation of the NCPS matrix, which can reduce the 2-D
plane fitting problem into two 1-D line fitting problems, where
the phase unwrapping is more easily solved. However, in large
noise cases, the conventional phase unwrapping algorithms
may fail to extract an accurate 1-D phase. Ling et al. [33]
proposed a new phase unwrapping algorithm based on the
monotonic and linear variation of the 1-D phase, which can
further improve the accuracy of phase unwrapping. In order
to deal with the outliers in the unwrapped 1-D phase, Tong
et al. [21] proposed a method based on Hoge’s method and
the unified random sample consensus (RANSAC) [34], [35]
method, called SVD-RANSAC. By using RANSAC to fit the
1-D phase, SVD-RANSAC can partially eliminate the influ-
ence of outliers and had achieved a higher accuracy. However,
it should be noted that SVD is also an LS-based method;
therefore, in the presence of non-Gaussian noise, the domain
rank-one approximation of the NCPS matrix obtained by
SVD is not the theoretically optimal one.

As we have mentioned earlier, the two categories of methods
both suffer from the impact of noise in NCPS. First, all
the LS-based matching methods require the noise to obey
the Gaussian distribution, which often deviates from the real
situation. Second, when the images to be matched are heavily
corrupted by noise, the performance of all existing methods
will inevitably deteriorate. Interestingly, we find that the
correlations between the components in NCPS can be used
to effectively suppress the noise. In this article, we propose
the concept of autocorrelated NCPS (ANCPS), and based on
this concept, we propose a new image translation matching
method, named the ANCPS method, which is expected to
further refine the solution of the image matching problem.

This article is organized as follows. The definition of
ANCPS and the implementation of ANCPS are presented in
Section II. Experiments with simulated and real images are
discussed in Section III. The conclusion is given in Section IV.
We provide detailed proofs of the lemmas and theorems
in Appendix B.

II. METHOD

In this section, we introduce the ANCPS method from
the following three aspects. First, the concept of ANCPS is
defined, and the relevant theoretical analysis is elaborated.
Then, the matching algorithm based on total least-squares
(TLS) to estimate the displacements from ANCPS is presented.
Finally, the iterative version of the ANCPS method using the
CSM is discussed. Details are stated as follows, and the proofs
of the lemmas and theorem in this section are demonstrated
in Appendix B.

A. Autocorrelated Normalized Cross-Power Spectrum

Noting that (3) only holds in noise-free circumstances;
however, the real image always contains more or less noise.
Assume that the real images are affected by zero-mean additive
Gaussian noise with a constant variance. Let F̂(u, v) and
Ĝ(u, v) be the DFTs of the images with noise, and N f (u, v)
and Ng(u, v) are the phase noise in F̂(u, v) and Ĝ(u, v),
respectively, and then, the NCPS of the two noisy images can
be written as

Ŝ(u, v) = F̂(u, v)Ĝ∗(u, v)

|F̂(u, v)Ĝ∗(u, v)| = F̂(u, v)

|F̂(u, v)|
Ĝ∗(u, v)

|Ĝ∗(u, v)|
= F(u, v)

|F(u, v)|e j N f (u,v) G∗(u, v)

|G∗(u, v)| e− j Ng(u,v)

= e j2π(um0/M+vn0/N)e j N f (u,v)− j Ng(u,v)

= S(u, v)e j Ns (u,v) (5)

where Ns (u, v) = N f (u, v) − Ng(u, v) is the phase of
the multiplicative noise contained in Ŝ(u, v). All existing
NCPS-based methods estimate the offset between two images
to be matched directly from Ŝ(u, v) instead of S(u, v). When
the images are seriously corrupted by noise, it can be seen
from (5) that Ŝ(u, v) may greatly deviate from S(u, v), which
will inevitably lead to a poor accuracy for most NCPS-based
matching methods. Therefore, how to obtain a more accurate
NCPS from Ŝ(u, v) is an important and significant problem.

Although Ŝ(u, v) and S(u, v) differ in phase, as shown
in (5), we find that the phases of the expectation of Ŝ(u, v)
and Ŝ(u, v)Ŝ∗(u − μ, v − ν) are the same as that of S(u, v)
and of S(μ, ν), respectively, which is stated in Lemma 1.

Lemma 1: The expectation of Ŝ(u, v) has the same phase
as S(u, v), and the expectation of Ŝ(u, v)Ŝ∗(u −μ, v − ν) has
the same phase as S(μ, ν).

According to this lemma, it can be found that, for a fixed
pair (μ, ν), though the phase of Ŝ(u, v)Ŝ∗(u −μ, v −ν) varies
with different (u, v) due to the existence of the phase noise,
their expectations all have the same phase as S(μ, ν). For
simplicity, we denote

R(μ, ν; u, v) = Ŝ(u, v)Ŝ∗(u − μ, v − ν). (6)

By fixing (μ, ν) and varying (u, v), we can obtain a series of
R(μ, ν; u, v), whose expectations all have the same phase as
S(μ, ν). This motivates us to pursue a more accurate S(μ, ν)
by averaging all the above R(μ, ν; u, v). Hence, we propose
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the following formula to obtain an estimation of S(μ, ν):

R(μ, ν) = 1

k(μ, ν)

∑
u,v

R(μ, ν; u, v)

= S(μ, ν)

∑
u,v e j Ns (u,v)− j Ns (u−μ,v−ν)

k(μ, ν)
(7)

where k(μ, ν) is the number of sum terms. Interestingly,
we can find that R(μ, ν) is actually the autocorrelation of
NCPS, which is why our method is named ANCPS. In addi-
tion, we have an important conclusion about ANCPS, which
is given in Theorem 1.

Theorem 1: The expectation of R(μ, ν) has the same phase
as S(μ, ν).

The significance of Theorem 1 lies in that, by using R(μ, ν)
instead of Ŝ(u, v), we can obtain a more accurate estimation
of NCPS, from which more robust and accurate displacements
can be evaluated. Furthermore, we give a quantitative analysis
of the denoising performance of ANCPS, which is stated in
Lemma 2.

Lemma 2: If c and σ 2 are assumed to be the mean and
variance of the multiplicative noise in NCPS, respectively, then
the variance of the multiplicative noise in ANCPS is (σ 4 +
2c2σ 2)/k(μ, ν).

In the following, we use a simple experiment to demonstrate
the superiority of ANCPS over NCPS. In the experiment,
the image shown in Fig. 1(a) is taken as the reference image.
Then, we generate the image to be matched by cyclically shift-
ing [31] the reference image with (5.5, 5.5) pixels, as shown
in Fig. 1(b). When there is no noise added to these two
images, it can be seen from Fig. 1(c) and (d) that ANCPS
is totally equivalent to NCPS, which is consistent with the
conclusion in Theorem 1. However, when the two images
are manually added by zero-mean Gaussian noise with the
standard deviation of 0.1, we can find from Fig. 2(c) that
the phase of NCPS is severely affected by the noise. The
periodicity of the phase is hard to be distinguished from the
high-frequency part of NCPS. However, by introducing the
concept of ANCPS given by (7), the required phase is almost
magically restored in Fig. 2(d), which obviously provides great
convenience for the following matching work.

B. Estimating Displacements

In this section, we investigate how to estimate the displace-
ments from ANCPS defined earlier. Noting that additive noise
is much easier to be handled than multiplicative noise; thus,
we transform the multiplicative noise in ANCPS into additive
noise

R(μ, ν) = S(μ, ν)

∑
u,v e j Ns(u,v)− j Ns (u−μ,v−ν)

k(μ, ν)
= S(μ, ν)

+ S(μ, ν) ∗
(∑

u,v e j Ns(u,v)− j Ns (u−μ,v−ν)

k(μ, ν)
− 1

)

= S(μ, ν) + W (μ, ν) (8)

where W (μ, ν) = S(μ, ν)∗ (
∑

u,v e j Ns (u,v)− j Ns (u−μ,v−ν)

k(μ,ν)
− 1), and we

have the following lemma:

Fig. 1. Comparison of NCPS and ANCPS in absence of noise. (a) Reference
image. (b) Image cyclically shifted by (5.5, 5.5) pixels. (c) Phase of NCPS.
(d) Phase of ANCPS.

Fig. 2. Comparison of NCPS and ANCPS in presence of noise. (a) Reference
image added by noise. (b) Image cyclically shifted by (5.5, 5.5) pixels and
added by noise. (c) Phase of NCPS. (d) Phase of ANCPS.

Lemma 3: W (μ, ν) tends to be a Gaussian random variable
as the size of images grows larger.

Since S(μ, ν) is a complex number with magnitude of 1,
by removing the additive noise from ANCPS, we have the
following formula:

R(μ, ν) − W (μ, ν)

R(μ − 1, ν) − W (μ − 1, ν)
= S(μ, ν)

S(μ − 1, ν)

= S(μ, ν)S∗(μ − 1, ν). (9)
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According to (3), it is obvious that S(μ, ν)S∗(μ−1, ν) equals
e j2πm0/M ; thus, (9) can be rewritten as

R(μ, ν)−W (μ, ν)=[R(μ−1, ν)−W (μ−1, ν)]e j2πm0/M .

(10)

From (10), we can find that e j2πm0/M can be estimated
by solving a regression problem between two variables
R(μ − 1, ν) and R(μ, ν). Since there exists noise on
both variables, we adopt the TLS algorithm instead of the
LS algorithm to estimate the coefficient e j2πm0/M . The details
are given in the following.

Theoretically, the coefficient e j2πm0/M can be evaluated
by performing TLS on the observations of R(μ, ν) and
R(μ − 1, ν). However, in practice, it is unnecessary to utilize
all pixels in ANCPS to estimate the displacements. Therefore,
we assume that l pixels are involved in the estimation of the
coefficient, and they are denoted in the form of a vector as
follows:

q = [R(μ1, ν1), R(μ2, ν2), . . . , R(μl , νl)]T (11)

where (μi , νi ) (1 ≤ i ≤ l) is the coordinate of the i th element
in q. Accordingly, by shifting the coordinate μ, we can obtain
another vector p

p = [R(μ1 − 1, ν1), R(μ2 − 1, ν2), . . . , R(μl − 1, νl)]T.

(12)

Therefore, (10) can be expressed as the following equation:
q + e2 = ( p + e1)bm (13)

where e1 and e2 are the unknown noise vectors and bm is
the coefficient to be estimated. The estimation of bm can be
attributed to the following optimization problem [36]:

arg min
e1,e2

�[e1 e2]�F

s.t. q + e2 = ( p + e1)bm (14)

where || · ||F represents the Frobenius norm. Assuming that
the SVD of [ p q] is

[ p q] = U�V = U�

[
V11 V12

V21 V22

]
(15)

where V is a 2 × 2 matrix. According to [36], bm can be
estimated by the following formula:

bm = −V12V−1
22 . (16)

Then, the displacement m0 can be simply obtained by extract-
ing the phase of bm

m0 = M

2π
angle(bm). (17)

Similarly, we can obtain the displacement n0 by

n0 = N

2π
angle(bn) (18)

where bn is the coefficient estimated in the other direction.

Fig. 3. Simple examples of CSM. (a) Integer pixel displacements with m = 1
and n = 1. (b) Subpixel displacements with m = 0.1 and n = 0.2.

C. Eliminating the Influence of Unmatched Areas

In addition to noise, the effect of unmatched areas between
two images on the final matching accuracy cannot be ignored.
According to the suggestion in [31], we intend to use CSM to
mitigate the influence of unmatched areas.

The CSM is a special constructed matrix, which has the
form of

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . .

...
...

... 0
. . . 0

0 0
...

. . . 1
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Let I be an M × N image, QM×M be an M × M CSM, and
QN×N be an N × N CSM, and then, the image cyclically
shifted by (m, n) pixels can be expressed as

I� = (QT
M×M

)m
IQn

N×N . (20)

Fig. 3 shows two examples using the CSM to shift a 5 × 5
image. Especially, it can be found from Fig. 3(b) that subpixel
displacements with any accuracy can be achieved by calculat-
ing the corresponding power of the CSM.

In the following, we use a simple example to demonstrate
how the CSM iteratively eliminates the influence of the
unmatched areas. As shown in Fig. 4, two 5 × 5 images
(I1 and I2) with displacements of (1, 1) are required to be
matched, and their matched areas are framed by red boxes.

It is proven in [31] that due to the existence of unmatched
areas, all phase-based subpixel matching methods can only
obtain an approximate solution. Assuming that the initial
estimation is (0.6, 0.6), then we generate I(1)

2 by cyclically
shifting I2 by (−0.6,−0.6) pixel. In order to eliminate the
impact of unmatched areas, two subimages of I1 and I(1)

2 ,
which are framed by the blue boxes, are generated by remov-
ing their outermost pixels. The next matching is conducted
between these two subimages. It is assumed that the estimated
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Fig. 4. Workflow of iterative use of CSM, where nitr is the number of iterations.

displacements are (0.3, 0.3), which are apparently smaller
than the last estimation, i.e., (0.6, 0.6). By repeating the
abovementioned step, we can gradually correct the subpixel
displacement estimation, and the total displacement estimation
can be obtained by summing up the abovementioned displace-
ment of each step.

It can be found from Fig. 4 that the repeated use of the
CSM can effectively reduce the influence of the unmatched
areas between the images to be matched. Therefore, in this
study, we integrate the CSM into the presented ANCPS
algorithm, and the complete pseudocode of the algorithm is
given in Algorithm 1.

III. EXPERIMENTS

Simulated and real images are used to evaluate the perfor-
mance of our method. In the simulated case, image pairs with
known offsets are generated from a large image captured by
the Ziyuan-3 (ZY-3), which is a Chinese Earth observation
satellite launched in January 2012. In addition, multiple other
commonly used image registration methods based on NCPS
(IDFT-US, Stone, SVD-RANSAC, and CSM) are performed
to be compared. For the real image case, a hyperspectral image
acquired by a push-broom imaging (PHI) spectrometer is
selected, which has a misalignment between the sensors. Thus,
there may exist subpixel displacements between different
bands in the hyperspectral image, which will lead to spectral
distortion. Since there is no ground truth of the displacements
between the bands of the image, the displacements estimated
with different bands selected as the reference image are
compared to demonstrate the performance of our method.

A. Simulated Images

In this section, we generate multiple simulated image
pairs to evaluate the performance of our method, namely,
ANCPS(nitr), where nitr is the number of iterations. For
comparison, we also conduct four other methods on the

Algorithm 1 Pseudocode to Implement the ANCPS-Based
Method
Input: the reference image I1, the matching image I2, and

the number of iterations nitr

Output: the displacements (m, n)
1: Use the DFT based method to calculate the integer part

of the displacements (m0, n0), and crop the two images
into Î1 and Î2 according to (m0, n0), so that the remaining
displacements between Î1 and Î2 are smaller than one pixel
(prepossessing the integer part of the displacements for
faster convergence speed).

2: Initialize the decimal part of the displacements as (md =
0, nd = 0).

3: for i = 1 : nitr do
4: Calculate ANCPS according to Eq. (7) with the outermost

pixels of Î1 and Î2 removed.
5: Generate the corresponding vectors in both μ and ν

directions, estimate the parameters according to Eq. (16),
and obtain the sub-pixel displacements (mi , ni ) according
to Eqs. (17) and (18).

6: Cyclically shift Î2 with (−mi ,−ni ) according to Eq. (20).
7: (md , nd) = (md, nd) + (mi , ni ).
8: end for
9: (m, n) = (m0, n0) + (md, nd).

simulated image pairs, including IDFT-US, SVD-RANSAC,
Stone, and the CSM method [CSM(nitr)]. In the IDFT-US
method, the upsampling factor k is set to 100 in the following
experiments since we find that the performance of IDFT-US
does not improve anymore as k is further increased. For the
SVD-RANSAC method, a threshold to determine whether a
data point is an outlier is needed. In the original article,
the threshold was set to 0.01–0.03. However, in our experi-
ments, the noise is much larger, where a small threshold could
make the RANSAC algorithm fail to converge. Hence, through

Authorized licensed use limited to: BOURNEMOUTH UNIVERSITY. Downloaded on June 24,2021 at 04:25:57 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 5. Hong Kong data (the locations of the three reference images are
framed by the red boxes).

Fig. 6. Procedure of generating the three reference images. (a) Subimages
cropped from the original image (1400 × 1400 pixels). (b) Images blurred
by a 15 × 15 pixels Gaussian function kernel with σg = 5 (1400 × 1400
pixels). (c) Images downsampled (DDS) by a factor of 7 (200 × 200 pixels).
(d) Images added with the Gaussian noise with σn = 0.05 (200×200 pixels).

multiple experiments, we find that 0.2 is a relatively good
choice. The CSM(nitr) method estimates the displacements by
linear fitting the 2-D plane of the phase of NCPS, which is
the same as the Stone method. Thus, if the iteration number

Fig. 7. Results of the aliasing experiment. (a) Mean value of the error in
the DDS case. (b) Mean value of the error in the MDS case. (c) Max value
of the error in the DDS case. (d) Max value of the error in the MDS case.
(e) Standard deviation of the error in the DDS case. (f) Standard deviation of
the error in the MDS case.

of CSM(nitr) is set to 1, it is exactly equivalent to the Stone
method. In addition, as recommended in SVD-RANSAC,
Stone, and CSM(nitr), a frequency mask should be added to
NCPS to remove high-frequency components. In the original
version of SVD-RANSAC and Stone, the radius of the fre-
quency mask is set to 0.3 × min(M, N), while, in CSM(nitr),
the radius is set to 0.25 × min(M, N). Through experiments,
we find that SVD-RANSAC shows better performance when
the radius is set to 0.3 × min(M, N), and both Stone and
CSM(nitr) show better performance when the radius is set to
0.25 × min(M, N). Hence, in the following, the radius of the
frequency mask in SVD-RANSAC is set to 0.3 ×min(M, N),
and in Stone and CSM(nitr), it is set to 0.25 × min(M, N).
A raised-cosine window is applied to the images to be
matched, and a phase fringe filter with a size of 5 × 5 is
applied to NCPS in SVD-RANSAC as recommended. In Stone
and CSM(nitr), it is recommended to remove abnormal pixels
before linear fitting; thus, a 5 × 5 median filter is applied to
NCPS. For fair comparison, a frequency mask with a radius
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Fig. 8. results of the antinoise experiment. (a) Mean value of the error in
the DDS case. (b) Mean value of the error in the MDS case. (c) Max value
of the error in the DDS case. (d) Max value of the error in the MDS case.
(e) Standard deviation of the error in the DDS case. (f) Standard deviation of
the error in the MDS case.

of 0.25 × min(M, N) is also applied in NCPS, and the pixels
within (μ2 + ν2)1/2 ≤ min(M, N)/8 are selected to estimate
the displacements. Finally, the iteration numbers of CSM(nitr)
and ANCPS(nitr) are both set to 3. In addition, ANCPS(1),
which does not use the CSM, is also conducted to intuitively
show the effect of ANCPS.

The image with the size of 8000 × 8000 pixels and
with a spatial resolution of 2.5 m is used in the following
experiments, which is captured by the nadir sensor of ZY-3.
The scene of the image is located in Hong Kong of China; thus,
it is referred to as the Hong Kong data. The following steps are
adopted to generate image pairs with subpixel displacements.
First, two 1400 × 1400 subimages are cropped from the
8000 × 8000 image at intervals of (sx , sy) pixels. Then,
the cropped images are blurred by a 2-D Gaussian function
with the parameter σg . Then, the images are downsampled by a
factor of t so that the downsampled images have the displace-
ments of (sx/t, sy/t). Two downsampling methods are used in
the following experiments: the first is directly downsampling,

Fig. 9. Examples of images with different types of noise added. (a) Multi-
plicative Gaussian noise with standard deviation of 0.6. (b) Salt and pepper
noise with 0.1% pixels corrupted. (c) Strip noise with 0.2% columns corrupted.

namely, DDS, and the second is mean downsampling, namely,
MDS, where the mean value of a region with the size of
t × t pixels is used to represent the region. Finally, the two
images are normalized to [0, 1], and the Gaussian noise with
a standard deviation of σn is added to the images.

The estimation error e is defined as the two-norm of the
offset between the estimation and the ground truth, which is
given by e = (e2

x + e2
y)

1/2, where ex and ey are the error in the
x- and y-directions, respectively. In order to obtain a result
in the statistical sense, multiple experiments with different
σg’s, σn’s, and displacements are conducted for each method,
and three metrics were used to evaluate their performance: the
mean value of e, the max value of e, and the standard deviation
of e.

The locations of three reference images are shown in Fig. 5,
and Fig. 6 shows how the reference images are generated.
In the following experiments, t is set to 7, and the size
of the 2-D Gaussian function is set to 15 × 15 pixels.
We select 0, 5, 10, 15, and 20 as integer displacements,
and each integer displacement is combined with all possible
decimal displacements. Therefore, for each reference image,
5 × (7 − 1) × (7 − 1) = 180 images with different subpixel
displacements are generated.

1) Aliasing Experiment: In this experiment, σn is set to 0,
σg ranges from 0.01 to 5, and the results are shown in Fig. 7.
When σg is small, it can be seen from Fig. 7(a), (c), and (e) that
the three metrics of all methods gradually decrease as σg

increases in the DDS case. When σg is large, except IDFT-US,
all other methods show a stable performance. The performance
of ANCPS(1) is apparently better than that of IDFT-US and of
SVD-RANSAC and is slightly better than that of Stone. Due
to the existence of unmatched areas, ANCPS(1) has a larger
estimation error than CSM(3). However, by utilizing the CSM,
the accuracy of ANCPS(3) can reach the same level as that of
CSM(3). From Fig. 7(b), (d), and (f), we can find that when
σg is larger than 2, the curves of the three metrics in the MDS
case are similar to those in the DDS case.

2) Antinoise Experiment: In this experiment, σg is set to
a fixed value (σg = 5), σn ranges from 0 to 0.2, and the
results are shown in Fig. 8. It can be seen from Fig. 8(a), (c),
and (e) that with an increase of the standard deviation of the
noise, the estimation error of all methods inevitably becomes
larger in the DDS case. We can also find that the performance
of SVD-RANSAC deteriorates a lot when σg is close to 0.2,
which is found to be caused by the failure of the 1-D phase
unwrapping in large noise cases. From Fig. 8(a), (c), and (e),
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Fig. 10. Antinoise experiment with different types of noise added. (a)–(c) Multiplicative Gaussian noise. (d)–(f) Salt and pepper noise. (g)–(i) Strip noise.

it can be found that in comparison with IDFT-US,
SVD-RANSAC, and Stone, ANCPS(1) can obtain a higher
matching accuracy. However, in a small noise case, ANCPS(1)
is inferior to CSM(3) in the matching accuracy. It indicates
that, in this case, the unmatched areas have a larger impact
on the result than the noise. As the standard deviation of
the noise increases, ANCPS(1) gradually shows its superiority
over CSM(3). It is worth noting that because ANCPS(3)
considers the impact of both noise and the unmatched areas,
its accuracy is always higher than other methods. From Fig. 8,
we can find that the three metrics of all methods share a similar
tendency with different downsampling methods adopted.

Except for the additive Gaussian noise, we also add other
types of noise to the images, including multiplicative Gaussian
noise, salt and pepper noise, and strip noise. For multiplicative
Gaussian noise, the mean value of it is set to 1 and the standard
deviation of it ranges from 0 to 0.6. For the salt and pepper
noise, the percentage of corrupted pixels ranges from 0 to 0.1.
For the strip noise, we randomly remove some columns of an
image, and the percentage of corrupted columns ranges from
0 to 0.2. The examples of images added by different types of

noise are shown in Fig. 9, and the quantitative comparisons are
shown in Fig. 10. Noting that, in Fig. 10(g)–(i), the error of
IDFT-US is much larger than other methods; thus, its curves
are not included in the figures. In addition, because different
downsampling methods have a small influence on the antinoise
performance, only DDS is used in this experiment.

From Fig. 10, we can find that the trends of the three metrics
of all methods with different types of noise are similar to
that in Fig. 8. It is worth noting that, in the strip noise case,
SVD-RANSAC shows a stable performance. As can be seen
from Fig. 10 that ANCPS(1) and ANCPS(3) are both robust
for different types of noise, especially for the salt and pepper
noise. Noting that, comparing with ANCPS(1), ANCPS(3) also
considers the unmatched areas; therefore, it always has the
highest accuracy.

In addition, the computational time of all these methods
is listed in Table I. All the abovementioned algorithms are
programed in MATLAB on a computer with a 2.0-GHz CPU
and 8-GB memory. As can be seen from Table I, among
all these methods, ANCPS(3) has the highest computation
complexity. However, considering its powerful performance
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TABLE I

COMPUTATION TIME OF ONE RUN FOR ALL METHODS

Fig. 11. True-color image of the farmland data.

(especially in terms of noise immunity), such a time cost is
acceptable in many cases.

B. Real Hyperspectral Image

For hyperspectral images acquired by the PHI spectrometer,
there may exist subpixel displacements between different
bands; thus, it is necessary to estimate and calibrate the
displacements to prevent spectral distortion. In this section,
the hyperspectral image acquired by the PHI spectrometer
developed by the Shanghai Institute of Technical Physics, Chi-
nese Academy of Sciences, is used to evaluate the performance
of our method.

The scene in the hyperspectral image is covered by a variety
of farmland; thus, it is referred to as farmland data. The
farmland data have a size of 350 × 570 pixels and 80 bands
ranging from 411.9 to 832.79 nm. The true-color image of this
data is shown in Fig. 11.

In this experiment, the first and last few bands are removed
because of their low signal-to-noise rate, i.e., only bands 10–
60 are selected. To evaluate the performance of the methods,
each band is selected as the reference image, and the dis-
placements between the reference band and left bands are
estimated. In order to compare the displacements estimated
with different reference images, the displacement vector of
band 10 is always set to [0, 0]T by a simple shifting operation.
For example, let band i be the reference image, and then,
the displacement vector between bands i and j can be esti-
mated, which is denoted d i, j . Thus, for this reference image,
a 2 × 51 displacement matrix [di,10, d i,11, . . . , d i,60] can be
obtained. Then, an adjusted displacement matrix [0, d i,11 −
d i,10, . . . , d i,60 − d i,10] is generated by subtracting d i,10 from
all columns. Finally, by calculating the norm of each column
of the adjusted matrix, we can obtain a displacement vector
[0, ||di,11 − d i,10||, . . . , ||d i,60 − d i,10||] for band i . Noting that
one of the 51 bands is selected as the reference image at a time;

Fig. 12. Displacement curves. (a) IDFT-US. (b) SVD-RANSAC. (c) Stone.
(d) CSM(3). (e) ANCPS(1). (f) ANCPS(3).

TABLE II

VARIANCE OF THE DISPLACEMENT CURVES FOR ALL METHODS

thus, for each method, 51 displacement curves are calculated.
It is obvious that the closer the displacement curves of different
bands are, the better the displacements are estimated.

In this experiment, the parameters of the methods are the
same as those in the simulated images experiment. From the
results shown in Fig. 12, we can find that the displacement
curves of ANCPS(3) vary in a very small range, which can be
further quantitatively demonstrated by the standard deviation
of the curves shown in Table II. This indicates that the
displacement estimated by ANCPS(3) is the most accurate one.

To intuitively show the performance of ANCPS(3), the dis-
placements between bands in horizontal and vertical directions
with band 10 selected as the reference image are plotted
in Fig. 13. From the figure, it can be found that the horizontal
displacement is close to zero, while the vertical displacement
gradually increases with the band number. The matching
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Fig. 13. Horizontal and vertical displacements between different bands for
the farmland data (band 10 is selected as the reference band).

Fig. 14. the matching result between band 10 and band 30 of part of the
farmland data. (a) Band 10 (reference image). (b) Local magnification of
band 10. (c) Band 30. (d) Local magnification of band 30. (e) Calibrated
band 30. (f) Local magnification of calibrated band 30.

result is consistent with the working principle of the PHI
spectrometer, which moves perpendicular to the linear array
of the sensor while acquiring the data.

For better visualization, a small square area locating at the
left top of the farmland data is cut out, and the matching result
between band 10 and band 30 is shown in Fig. 14. Comparing
with Fig. 14(a) and (c) or the local magnifications of them,
it can be found that Fig. 14(c) has a little offset from Fig. 14(a)
in the vertical direction. The displacements estimated by
ANCPS(3) are 0.612 (vertical) and −0.016 (horizontal) pixels,
which is roughly consistent with a visual inspection. The
calibrated image of Fig. 14(c) is shown in Fig. 14(e), which
is well-aligned with Fig. 14(a) in both horizontal and vertical
directions.

IV. CONCLUSION

Traditional NCPS-based image matching methods suffer
from noise. Especially, when the images are heavily corrupted
by noise, it is difficult for all existing NCPS-based image
matching methods to achieve satisfactory results. In this
article, the concept of ANCPS is proposed to alleviate the
influence of the noise in NCPS, and the experiments show
that ANCPS has a powerful antinoise performance. In addi-
tion, a new displacement estimation algorithm, which can
avoid phase extraction, is proposed to estimate the displace-
ments from ANCPS. In order to eliminate the influence of
the unmatched areas, the CSM is also integrated into our
method. Moreover, besides the translation matching problem,
ANCPS could also be used to improve the performance of the
phase-based rotation and affine matching methods.

APPENDIX

A. Basic Knowledge

In this section, some preliminary knowledge required to
prove the lemmas and theorem in the Method section is
discussed.

Property 1: After DFT, the zero-mean Gaussian noise
added to the image will be turned into complex Gaussian noise,
whose magnitude is a Rayleigh distributed random variable
and whose phase is uniformly distributed from −π to π .

Proof: Let us take a 1-D time series as an example for
simplicity. Assume that {xn} is a sequence that contains N
independent zero-mean Gaussian distributed random variables
with variance of σ 2. Then, DFT of the sequence is defined as

Xk =
N−1∑
n=0

xne− j2πnk/N . (21)

Focusing, for now, on the real part, we have

Real(Xk) =
N−1∑
n=0

xn cos(2πnk/N). (22)

It is obvious that the real part of Xk is the sum of a sequence
of independent Gaussian random variables. Therefore, the dis-
tribution of the real part of Xk is still Gaussian. Similarly,
we have that the imaginary part of Xk

Imag(Xk) =
N−1∑
n=0

xn sin(2πnk/N) (23)

is also a Gaussian random variable and has the same variance
as the real part

Var[Real(Xk)] = E[(
N−1∑
n=0

xn cos(2πnk/N))2]

= E[
N−1∑
n=0

x2
n cos2(2πnk/N)]

= σ 2
N−1∑
n=0

cos2(2πnk/N)

= σ 2 N/2
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= σ 2
N−1∑
n=0

sin2(2πnk/N)

= Var[Imag(Xk)]. (24)

In addition, we also have

Cov[Real(Xk), Imag(Xk)]

= E

[
N−1∑
n=0

xn cos(2πnk/N)

N−1∑
n=0

xn sin(2πnk/N)

]

= σ 2
N−1∑
n=0

cos(2πnk/N) sin(2πnk/N) = 0. (25)

Therefore, the real part and imaginary part of Xk are uncorre-
lated. According to [37], for such a complex Gaussian random
variable, its magnitude is a Rayleigh distributed random vari-
able, and its phase is uniformly distributed from −π to π .

�
Property 2: Let ce jθc = ae jθa + be jθb , where θb is a

uniformly distributed random variable from −π to π , and
a, b, and θa are already known. Then, the probability density
function (pdf) of θc is symmetric about θa .

Proof: For simplicity, θc is written as a continuous
function of θb

θc = h(θb). (26)

From Fig. 15, we can find that function h(·) satisfies

2θa − θc = 2θa − h(θb) = h(2θa − θb). (27)

Because θb is a uniformly distributed random variable from
−π to π , the pdf of θb has a constant value 1/2π . Assume
that the cumulative distribution function (CDF) of θc is Fθc (θ),
which can be calculated by

Fθc (θ) =
∫

h(θb)≤θ

1

2π
dθb. (28)

Substitute θb with 2θa − θb, and then, we have

Fθc (θ) = −
∫

h(2θa−θb)≤θ

1

2π
d(2θa − θb)

=
∫

h(θb)≥2θa−θ

1

2π
dθb

= 1 − Fθc (2θa − θ). (29)

Noting that pdf is the differential of CDF, therefore, the pdf
of θc satisfies

pθc(θ) = F �
θc
(θ) = −F �

θc
(2θa − θ) = pθc(2θa − θ) (30)

which means that the distribution of θc is symmetric
about θa. �

Property 3: Let {Xn} be a series that contains N inde-
pendent random variables, and assume that the expectation
E[Xn] = μn and the variance Var[Xn] = σ 2

n exist and are
finite. Also, let s2

N = ∑N
n=1 σ 2

n . If the series of independent
random variables satisfies Lindeberg’s condition

lim
N→∞

1

s2
N

N∑
n=1

E[(Xn − μn)
2 · 1{|Xn−μn |>�sN }] = 0 (31)

Fig. 15. Illustration of the relationship between θa , θb , and θc.

for all � > 0, where 1{·} is the indicator function, then the
central limit theorem holds, i.e., the random variable∑N

n=1(Xn − μn)

sN
(32)

converges in distribution to a standard normal random variable
as N → ∞ [38].

B. Detailed Proofs

In this section, the detailed proofs of the lemmas and
theorem in the method section are demonstrated.

Proof: The expectation of Ŝ(u, v) has the same phase as
S(u, v), and the expectation of Ŝ(u, v)Ŝ∗(u − μ, v − ν) has
the same phase as S(μ, ν).

Proof: According to Property 1, the DFT of the image
f (m, n) added by zero-mean Gaussian noise can be written
as

F̂(u, v) = F(u, v) + A(u, v)e j N(u,v) (33)

where A(u, v) is a Rayleigh distributed random variable and
N(u, v) uniformly distributes from −π to π . To obtain the pdf
of the phase noise in F̂(u, v), we first consider the random
variable N(u, v), and assume that A(u, v) is a constant value.
According to Property 2, the conditional pdf of the phase of
F̂(u, v) is symmetric about the phase of F(u, v); in other
words, the conditional pdf of N f (u, v) (the phase of the
multiplicative noise in F̂(u, v)) is symmetric about zero. Let
pN f (u,v)|A(u,v)(θ |a) be the pdf of N f (u, v) on the condition of
A(u, v), and it is obvious that, for any a, pN f (u,v)|A(u,v)(θ |a)
is always symmetric about zero. Let pA(u,v)(a) be the pdf of
A(u, v), and then, we have that the pdf of N f (u, v) satisfies

pN f (u,v)(θ) =
∫

pN f (u,v)|A(u,v)(θ |a)pA(u,v)(a)da

=
∫

pN f (u,v)|A(u,v)(−θ |a)pA(u,v)(a)da

= pN f (u,v)(−θ). (34)

Thus, the pdf of N f (u, v) is symmetric about zero. Simi-
larly, we have that the pdf of Ng(u, v) [the phase of the
multiplicative noise in Ĝ(u, v)] is also symmetric about zero.
Because Ns (u, v) = N f (u, v)− Ng(u, v), we can simply infer
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that the pdf of Ns(u, v) is symmetric about zero. Therefore,
the expectation of Ŝ(u, v) is

E[Ŝ(u, v)] = E[S(u, v)e j Ns (u,v)]
= S(u, v)E[cos Ns (u, v) + j sin Ns (u, v)]
= S(u, v)E[cos Ns (u, v)]. (35)

Because E[cos Ns (u, v)] is a real number, the phase of Ŝ(u, v)
is the same as that of S(u, v).

In addition, the noise in NCPS is assumed to be indepen-
dent; thus, we have

E[Ŝ(u, v)Ŝ∗(u − μ, v − ν)]
= E[Ŝ(u, v)]E[Ŝ∗(u − μ, v − ν)]
= S(u, v)S∗(u − μ, v − ν)

· E[cos Ns (u, v)]E[cos Ns(u − μ, v − ν)]
= S(μ, ν)E[cos Ns (u, v)]E[cos Ns(u − μ, v − ν)]. (36)

Therefore, the expectation of Ŝ(u, v)Ŝ∗(u − μ, v − ν) has the
same phase as S(μ, ν). �

Theorem 1: The expectation of R(μ, ν) has the same phase
as S(μ, ν).

Proof: According to Lemma 1, the phase of the expecta-
tion of R(μ, ν; u, v) is the same as that of S(μ, ν)

E[R(μ, ν; u, v)]
= S(μ, ν)E[cos Ns (u, v)]E[cos Ns(u − μ, v − ν)]. (37)

Therefore, the expectation of R(μ, ν) is

E[R(μ, ν)]
= E

[
1

k(μ, ν)

∑
u,v

R(μ, ν; u, v)

]

= 1

k(μ, ν)

∑
u,v

E[R(μ, ν; u, v)]

= S(μ, ν)

∑
u,v E[cos Ns(u, v)]E[cos Ns (u − μ, v − ν)]

k(μ, ν)
.

(38)

Thus, the phase of E[R(μ, ν)] is the same as that of S(μ, ν).
�

Lemma 2: If c and σ 2 are assumed to be the mean and
variance of the multiplicative noise in NCPS, separately, then
the variance of the multiplicative noise in ANCPS is (σ 4 +
2c2σ 2)/k(μ, ν).

Proof: According to Lemma 1, the mean of the multi-
plicative noise in NCPS c is a real number

E[e j Ns(u,v)] = E[cos Ns(u, v)] = c. (39)

In addition, the multiplicative noise in NCPS is assumed to
be independent and have a constant variance

Var[e j Ns(u,v)] = σ 2. (40)

Then, the variance of e j Ns(u,v)− j Ns (u−μ,v−ν) can be easily
obtained

Var[e j Ns(u,v)− j Ns (u−μ,v−ν)]
= Var[e j Ns(u,v)e− j Ns(u−μ,v−ν)]

= E[(e j Ns(u,v)e− j Ns (u−μ,v−ν) − c2)2]
= E[(e j Ns(u,v)e− j Ns (u−μ,v−ν))2] − c4

= (Var[e j Ns(u,v)] + c2)(Var[e j Ns(u−μ,v−ν)] + c2) − c4

= σ 4 + 2c2σ 2. (41)

Therefore, assume that the noise in R(μ, ν; u, v) with different
u’s and v’s is independent, and the variance of the multiplica-
tive noise in ANCPS is

Var

[∑
u,v e j Ns(u,v)− j Ns (u−μ,v−ν)

k(μ, ν)

]

= 1

k(μ, ν)2

∑
u,v

Var[e j Ns(u,v)− j Ns (u−μ,v−ν)]

=
∑

u,v (σ
4 + 2c2σ 2)

k2(μ, ν)

= σ 4 + 2c2σ 2

k(μ, ν)
. (42)

�
Lemma 3: W (μ, ν) tends to be a Gaussian random variable

as the images grow larger.
Proof: For simplicity, we denote Nr (u, v; μ, ν) =

Ns(u, v)−Ns (u−μ, v−ν). Noting that additive noise W (μ, ν)
is the sum of a series of random variables

W (μ, ν) = S(μ, ν)

[∑
u,v e j Nr (μ,ν;u,v)

k(μ, ν)
− 1

]

= S(μ, ν)

∑
u,v [e j Nr (μ,ν;u,v) − 1]

k(μ, ν)
. (43)

Let W (μ, ν; u, v) = e j Nr (μ,ν;u,v) − E[e j Nr (μ,ν;u,v)], and it
is obvious that W (μ, ν; u, v) is a zero-mean random vari-
able. In addition, |W (μ, ν; u, v)| ≤ 2; thus, the variance of
W (μ, ν; u, v) is limited. Noting that the Gaussian noise in
the spatial domain has a small influence on the low-frequency
domain and a large influence on the high-frequency domain,
therefore, σ 2(μ, ν; u, v), the variance of W (μ, ν; u, v), tends
to be a positive constant value as u, v grow larger (the zero
frequency is at the point u = 0, v = 0). However, if the sum of
the series exists, the series must converge to zero. Therefore,
the sum of the variance series tends to be infinity

lim
M,N→∞ z2(μ, ν) =

∑
u,v

σ 2(μ, ν; u, v) = ∞ (44)

which means that, for any � > 0, the possibility of
|W (μ, ν; u, v)| to be greater than �z(μ, ν) tends to be zero

lim
M,N→∞ P[|W (x, y; u, v)| > �z(x, y)] = 0. (45)

Then, we have Lindeberg’s condition

lim
M,N→∞

∑
uv E[W 2(μ, ν; u, v) · 1{|W (μ,ν;u,v)|>�z(μ,ν)}]

z2(μ, ν)
= 0.

(46)

Finally, if the components in the series of W (μ, ν; u, v) are
assumed to be independent,

∑
u,v W (μ, ν; u, v) tends to be a

zero-mean Gaussian random variable according to Property 3.
Therefore, W (μ, ν) tends to be a Gaussian random variable.

�
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